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Cosmological Background in Higgs Scalar ± Tensor
Theory Without Higgs Particles

H. Frommert1,2 and H. Schoor1

Received May 14, 1998

The scalar background field and its consequences are discussed for the Friedmann-
type cosmological solutions of the scalar±tensor theory of gravity with the Higgs
field of the Standard Model as the scalar gravitational field.

1. INTRODUCTION

In their scalar±tensor theory of gravity, Brans and Dicke [3], as well as

successors including Bergmann [2] and Wagoner [10], replaced the Newtonian

gravitational constant by a scalar field, i.e., function, which, within their

model, enters the theory as a completely new field.

However, modern physics already deals with another scalar field, the
Higgs field of the Standard Model of particle physics. As was first proposed

by Zee [11], it appears appealing to use this scalar Higgs field of particle

physics also as the scalar field in a scalar±tensor theory of gravity; this

approach has been investigated by Dehnen et al. [6]. In this theory, in addition

to its role in the Standard Model to make the particles massive, the scalar

Higgs field also generates the gravitational constant G, in the sense discussed
in Adler ’ s review article [1] of generating an `induced’ G from symmetry

breaking.

Surprisingly, however, if the Higgs field of the SU(3) 3 SU(2) 3 U (1)

Standard Model of the elementary particles is employed to generate G, the

Higgs field loses its source, i.e., can no longer be generated by fermions and

gauge bosons unless in the very weak gravitational channel [7]. Similar results
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were obtained independently by van der Bij [8]. As Styp-Rekowski and

Frommert [9] have shown, the only physically meaningful static solution of

this theory is the trivial one without any excited Higgs field present. As the
physical world is not static, a potential scalar field of the cosmological

background is most interesting, both on its own (e.g., for inflational scenarios;

see Cervantes-Cota and Dehnen [4]) and in order to have a fit for a more

realistic physical (i.e., dynamical) model configuration (e.g., galaxy).

Here we investigate the cosmological background scalar field for Fried-

mann-type cosmologies analytically. After a general discussion of the cosmo-
logical field equations, we implicitly assume weak scalar fields and discuss

the solutions of the scalar field equation for given expansion laws. Finally,

we obtain effective Einstein field equations as well as effective, time-depen-

dent values for the gravitational and the cosmological ª constant,º as well as

an effective vacuum energy density.

The reader can find the whole underlying formalism of this theory in
Dehnen and Frommert [7].

2. FRIEDMANN-TYPE COSMOLOGY IN THE HIGGS
SCALAR ± TENSOR THEORY

As outlined in ref. 7, the Higgs scalar±tensor theory can be obtained

by adding the scalar±tensor gravitational Lagrange density to the matter

Lagrangian of particle physics, which must be taken in curved spacetime

here, of course. After performing the symmetry breaking, one arrives at the

following Lagrange density3:

+ 5 H a v 2

16 p
[(1 1 w )2 R 2 2 L ] 1

v 2

2
w | m w | m 2 V ( w ) 1 LM J ( 2 g)1/2 (1)

where w is the excited Higgs field, R the Ricci scalar corresponding to, and

g the determinant of the metric g m n , V ( w ) the Higgs potential, and LM the
effective matter Lagrangian after symmetry breaking of the fermions and

gauge bosons of the Standard Model of particle physics (see, e.g., ref. 5). v
is the constant absolute (real) value of the vacuum scalar field, or Higgs field

ground state, and a is a numerical constant which, for the standard model

Higgs field considered here, is given by the square of the ratio of the Planck

mass to the mass of the electroweak W bosons:

3 Throughout this paper we use " 5 c 5 1 and the metric signature ( 1 2 2 2 ). The symbol
(. . .) | m denotes the partial, (. . .)| m the covariant derivative with respect to the coordinate x m .
For the cosmological discussion here, we also include the cosmological constant L , which
was omitted in previous works.
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a . (MPl /MW)2 . 1033 (2)

With the convenient substitution for the excited Higgs field j 5 (1 1 w )2

2 1, the Higgs potential V ( j ) is defined by

V ( j ) 5
3

32 p G
M 2 1 1 1

4 p
3 a 2 j 2 ’

3M 2

32 p G
j 2 (3)

From the variation of the Lagrange density (1), one obtains for the excited

Higgs field j the following homogeneous, covariant Klein±Gordon equa-
tion [7]:

j | m
| m 1 M 2 j 2

4±3 L

1 1 4 p /3 a
5 0 (4)

where M denotes the mass of the Higgs particles in this theory.4 The field
equation for the metric as the tensorial gravitational field reads

R m n 2
1

2
Rg m n 1

L
1 1 j

g m n

5 2
8 p G

1 1 j F T m n 1
v 2

4(1 1 j ) 1 j | m j | n 2
1

2
j | l j | l g m n 2 1 V ( j )g m n G

2
1

1 1 j
[ j | m | n 2 j | l

| l g m n ] (5)

with the Ricci tensor R m n belonging to the metric g m n and T m n as energy-

momentum tensor of matter. Because of the very large value of a (which is

responsible for the relative weakness of gravity as well as for the rather small
Higgs mass in this theory), we will neglect the 1/ a terms in equations (4)

and (3) in the following.

Here we look for solutions of the scalar field equation (4) on the cosmo-

logical background of a Robertson±Walker metric, defined by the line element

(in isotropic spatial coordinates)

ds2 5 dt 2 2 a (t)2 1

1 2 ( e /4)r 2 (dr 2 1 r 2d V 2) (6)

where, as usual, e 5 0, 1 1, 2 1 corresponds to the spatially flat, the closed,

and the open model universe, respectively, and a (t) is the time-dependent

scale factor. Moreover, we approximate the matter in cosmos by a perfect

fluid, characterized by its density r and pressure p only, as usual, and demand

4 This equation is homogeneous, as the constant- L term may be absorbed in the excited Higgs
field j .
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that r and p as well as the scalar field j are functions of the time coordinate

t only (cosmological principle). Then the scalar field equation (4) becomes5

j È 1 3
aÇ

a
j Ç 1 M 2 j 2

4

3
L [ 0 (7)

while the nontrivial components of the Einstein equations are the Fried-

mann equations:

aÇ 2 1 e
a 2 2

L /3

1 1 j
5

8 p G

3

1

1 1 j F r 1
v 2/8

1 1 j
j Ç 2 G

1
1

1 1 j F 2
aÇ

a
j Ç 1

1

4
M 2 1 1 1

4 p
3 a 2 j 2 G (8)

2
aÈ

a
1

aÇ 2 1 e
a 2 2

L
1 1 j

5 2
8 p G

1 1 j F p 1
v 2/8

1 1 j
j Ç 2 G

2
1

1 1 j F j È 1 2
aÇ

a
j Ç 2

3

4 1 M" 2
2

1 1 1
4 p
3 a 2 j 2 G (9)

These equations are augmented by the equation of continuity for the energy-

momentum tensor, which here reduces to

r Ç 1 3
aÇ

a
( r 1 p) 5

j Ç

2(1 1 j )
( r 2 3p) (10)

For the discussion of the cosmological background scalar field, one

notes first that, up to terms proportional to the Hubble constant H 5 aÇ /a and

the cosmological constant L , the scalar field equation (7) is solved by the

periodic function

j 5 j 0 cos[ v (t 2 t0)], v 5 v M 5 M 1 5 Mc2

" 2 (11)

with a constant amplitude j 0 and period v M , which is the Compton frequency

belonging to the Higgs mass M, and thus very large compared to the Hubble
constant. One could expect modifications of j 0 and v M for the exact solutions

which are time dependent, but change significantly only on the cosmological

time scale, so that for all noncosmological considerations equation (11) should

be a good approximation.

For the following, more detailed discussion, we note that the term with

the cosmological constant L in the scalar field equation (7) is even small

5 (. . .) ? : 5 ( - / - t) (. . .) denotes the time derivative of (. . .).
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compared to the one containing the Hubble constant, and can be absorbed

in j as a small additive contribution. Therefore, we can restrict ourselves

here to discuss the equation for L 5 0 only, which reads

j È 1 3
aÇ

a
j Ç 1 M 2 j 5 0 (12)

This equation may be simplified with the ansatz

j (t) 5 : a 2 3/2u (t) (13)

Herewith the field equation (12) reads

uÈ 1 F M 2 2
3

4 1 aÇa 2
2

2
3

2

aÈ

a G u 5 0 (14)

Up to terms of order H 2 and aÈ /a 5 2 qH 2 (with the cosmological acceleration

parameter6 q), the solution of this equation is identical to equation (11). Using

the cosmological parameters, the Hubble constant H and the acceleration

parameter q, we obtain equation (14) in the form

uÈ 1 F M 2 1
3

2
(2q 2 1)H 2 G u 5 0 (15)

For times small compared to the Hubble time 1/H, this equation should be

approximately solved by the solutions (11) of the approximated equation (7),
so that

u 5 u0 cos[M (t 2 t0)], j 5 u0a
2 3/2 cos[M (t 2 t0)] (16)

This solution is accurate to one order more (i.e., to the second order) in H,

or considered time differences compared to the Hubble time, than solution

(11). Some higher accuracy can be obtained by inserting the current values

of the function-valued parameters H and q into equation (15):

uÈ 1 F M 2 1
3

2
(2q0 2 1) H 2

0 G u 5 0, (17)

q0 5 q (t0) 5 const, H0 5 H (t0) 5 const

which is solved by

6 q is half the density parameter V in standard Friedmann cosmology without cosmological L .
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u 5 u0 cos F ! 1 1
3

2
(2q0 2 1) 1 H0

M 2
2

M(t 2 t0) G
j 5 u0a

2 3/2 cos F ! 1 1
3

2
(2q0 2 1) 1 H0

M 2
2

M(t 2 t0) G (18)

This solution differs from the above equation (16), by a slightly different

oscillation frequency, deviating from that in equation (16) (which is the

Compton frequency corresponding to the Higgs mass M ) by a correction of

the order given by the square of the ratio7 of the two characteristic times

relevant here, the Compton time 1/M corresponding to the Higgs mass M,
and the Hubble time 1/H0: (H0 /M )2. The smallness of this value can already

be seen by estimating the corrective term in the field equation (17), or the

frequency in (18), using the second Friedmann equation (9), which yields,

neglecting the scalar field j ,

(2q 2 1)H 2 5
e

a 2 1 8 p Gp 1 L

i.e., it is determined by the largest of its three terms: If « 5 6 1 (nonflat

case), baryonic matter dominates ( p ¿ r ), and L ¿ a 2 2, it is essentially

given by 6 1/a 2, while for the flat case, either the weak matter pressure p
or the cosmological constant L determines this correction. In view of this
small value, one has to consider that for a self-consistent solution, the contribu-

tions of the scalar field in the Friedmann equations (8) and (9) must be taken

into account, and it is not guaranteed that these are smaller than the deviations

discussed here. This will be important for attempts to iterate cosmological

solutions in this theory.

One may also discuss the exact solutions. A self-consistent, exact, and
simultaneous solution of the relevant equations (8)±(10) and (12) cannot

be given analytically. However, it can be obtained numerically to some

approximation, which was done by Cervantes-Cota and Dehnen [4], and is

of particular interest, especially in the context of possible inflation scenarios.

Here we discuss analytic background solutions, which are obtained if a

Friedmann solution is given as external field. Then it is possible to solve
equation (16) analytically for each given ansatz for a (t). This is presented

in the following for the two simplest cases, where it is possible to give

7 The value of this ratio can be estimated, taking into account that the Higgs mass in this theory
is smaller than the usual one by a factor of about 2.5 3 1016, or at least about 2.5 3 10 2 6

eV/c 2, corresponding to a Compton time of " /Mc2 ’ 2.6 3 10 2 10 s. This must be compared
to the Hubble time of 13 billion years [assuming H0 5 75 km/(s Mpc)], so that (H0 /M )2 ’
4 3 10 2 55.
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the exact solutions (also mentioned in ref. 4 as the limiting cases for the

inflationary cosmology):

1. The spatially flat Friedmann universe with L 5 0,

2. The empty universe with cosmological constant L .

One may hope that these background solutions are of interest in considerations

where cosmology plays the role of a background, i.e., the dynamics of galaxies

or clusters of galaxies.

2.1. The Spatially Flat Friedmann Universe with L 5 0

In this case, we have the following time evolution of the scale parame-

ter a (t):

a (t) 5 At2/3 (19)

and therefore

H (t) 5
aÇ

a
5

2

3t
(20)

aÈ

a
5 2

2

9t 2 1 q 5
1

2 2 (21)

This ansatz leads to the following equation for j :

j 5 a 2 3/2u 5 A 2 3/2t 2 1u

The differential equation (14) for u simplifies exactly to

uÈ 1 M 2u 5 0 (22)

which is identical to the equation without H0, and has the exact solution

u (t) 5 u0 cos[M(t 2 t0)] (23)

or

j 5 A 2 3/2u0t
2 1 cos[M(t 2 t0)] 5 j 0t0

cos[M (t 2 t0)]

t
(24)

where the relation for the amplitude at present time, j 0 5 A 2 3/2u0 /t0 5
a0

2 3/2u0, was used. To see the approximate constancy of the amplitude over

times small compared to the Hubble time (or world age), one may expand

the time t as t 5 t0 1 T. Then the solution (24) can be rewritten as
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j 5 j 0(t) cos[M(t 2 t0)], where j 0(t) 5
j 0

1 1 T/t0
’ j 0 1 1 2

3

2
H0T 2

(25)

2.2. The Empty Universe with Nonvanishing L (de Sitter Universe)

As a second ansatz, we investigate the case of the matter-free universe
with nonvanishing L (matter influence negligible compared with that of the

cosmological constant). Then we have

H 5
aÇ

a
5 ! L /3 5 const, a 5 a0e

H(t 2 t0), q 5 2 1 (26)

With this ansatz, the differential equation (14) for u takes the form

uÈ 1 1 M 2 2
9

4
H 2 2 u 5 0 (27)

which has the solution

u 5 u0 cos F ! M 2 2
9

4
H 2(t 2 t0) G (28)

or

j 5 a 2 3/2u 5 j 0e
2 (3/2)H(t 2 t0) cos F ! M 2 2

9

4
H 2(t 2 t0) G (29)

Again, with t 5 t0 1 T, the time-dependent amplitude j 0(t) of this solution
[see (25)] can be expanded in orders of T /t0 or Ht, and has the same form

as above up to the first order: j 0(t) 5 j 0(1 2 3±2 HT ).

3. REMARKS ON THE EXACT SOLUTIONS

The scalar field equation (14) or (15), in view of the approximate

solutions (16) or (18), may be rewritten with the ansatz u 5 u0(t) cos[ b (t)],
where b (t) 5 M * t dt8 ! 1 1 k (t8), so that b Ç 5 M ! 1 1 k (t) ( k ¿ 1 if

H /M ¿ 1, tH À " /Mc2). Then one obtains

uÈ 0 1 F 2 M 2 k 1
3

4
(2q 2 1)H 2 G u0 5 0 (30)

b Ç u 2
0 5 M ! 1 1 k u 2

0 5 const 5 : C (31)
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The second of these equations, (31), is solved, e.g., by u0 5 const and b Ç 5
const or k (t) 5 const; this is possible if q and H in (30) are taken as constants.

According to the remarks above, the deviation of u0 and b Ç or k (t) from
constancy can be expected to be small, at least for the large Hubble times

considered here. One may rewrite (30) by evaluating (31) in a single nonlinear

differential equation for u0(t):

uÈ 0 1 F M 2 1
3

4
(2q 2 1)H 2 G u0 2

C 2

u 3
0

5 0 (32)

In view of the very small values of the corrections to the approximate solution

(16) or (18), we will not further discuss this equation here.

4. EFFECTIVE EINSTEIN EQUATIONS WITH AN AVERAGED
COSMOLOGICAL SCALAR FIELD

Having on hand that the scalar field solution for the cosmological back-

ground is given by a rapidly oscillating function which overlies an amplitude
which changes at cosmological time scales only, it is of interest to take a

new look at the basic field equations of the theory. With the scalar field

amplitude given by

j 0 5 a (t) 2 3/2 u0 5 j 0(t) (33)

where u0 5 u0(t) must fulfill the differential equation (30) or (32), the time-
averaged8 (over one period of the scalar oscillation) Einstein equations take

the form (ª effectiveº Einstein equations):

R m n 2
1

2
Rg m n 1 K L

1 1 j L g m n

5 R m n 2
1

2
Rg m n 1

L

! 1 2 j 0(t)
2

g m n

5 K 2
8 p G

1 1 j F T m n 1
v 2

4(1 1 j ) 1 j , m j , n 2
1

2
j , l j , l g m n 2 1 V ( j )g m n G

8 The averaged terms are obtained by Taylor-expanding the factors corresponding to the 1 1
j denominators so that power series of j are obtained, and then taking the time average given
by the formula

^ F (t) & 5 ^ F & (t0) 5
1

2 p #
t0 1 T

t0

F (t8) dt8

where T 5 1/ v is the oscillation period, which must be small compared to the age of the
universe t0. This average is a time function which varies slowly over cosmological time scales.
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2
1

1 1 j 1 j , m ; n 2
1

2
j ; l

, l g m n 2 L
5
!

2
8 p G

! 1 2 j 0(t)
2

T m n 2 d 0
m d 0

n M 2 1 1

! 1 2 j 0(t)
2

2 1 2 1 1 2
2 p
a 2

1
M 2

4
g m n 1 1

! 1 2 j 0(t)
2

2 1 2
This means that the scalar field leads to the following:

x A (time-dependent) effective gravitational ª constantº

Geff 5
G

! 1 2 j 0(t)
2

. G (35)

x A correction factor and a negative (attractive) contribution to the

cosmological constant, or function, which becomes effectively

L eff 5
L

! 1 2 j 0(t)
2

2
M 2

4 1 1

! 1 2 j 0(t)
2

2 1 2 (36)

x A positive effective ª energy (or mass) density of the vacuum,º

given by

T vac
m n 5 d 0

m d 0
n r vac 5

d 0
m d 0

n M 2

8 p Geff 1 1

! 1 2 j 0(t)
2

2 1 2 1 1 2
2 p
a 2 (37)

As j 0(t) changes over cosmological time scales only, it may be regarded as

constant in a first approximation unless cosmological aspects are discussed

for themselves. This may be of particular interest for the dynamics of galaxies
(e.g., rotation curves) and galaxy clusters, i.e., the dark matter problem. The

calculation of the rotation curves for some disk galaxy models is in

preparation.

A possible limit for the time variations of j 0(t) may be found from

geophysical or solar system results.
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